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Abstract
We consider a class of evolution equations taking place on the edges of a
finite network and allow for feedback effects between different, possibly non-
adjacent edges. This generalizes the setting that is common in the literature,
where the only considered interactions take place at the boundary, i.e., in the
nodes of the network. We discuss well-posedness of the associated initial
value problem as well as contractivity and positivity properties of its solutions.
Finally, we discuss qualitative properties that can be formulated in terms of
invariance of linear subspaces of the state space, i.e., of symmetries of the
associated physical system. Applications to a neurobiological model as well as
to a system of linear Schrödinger equations on a quantum graph are discussed.

PACS numbers: 05.45.Mt, 03.65.Db
Mathematics Subject Classification: 34B45, 70S10, 47D06

1. Introduction

The mathematical analysis of elliptic operators acting on spaces of functions on networks
was started by Lumer in [22, 23]. It has been subsequently continued by many authors, both
in mathematics (in the context of network diffusion problems, see, e.g., [28, 30, 32]) and in
physics (leading to the theory of quantum graphs, see, e.g., [12, 19, 20]).

A form of weak non-local interactions for evolutionary problems over network-shaped
structures has already been considered in, e.g., [18, 19, 26]. Additionally, we are interested in
discussing systems of strongly coupled evolution equations. Such couplings may correspond
to the cases of either a phenomenological interaction among parts of the physical system (like
in a certain neurobiological theory, which we briefly discuss in section 5.1) or else as a form
of external control (possibly with the aim of stabilization).

More precisely, we want to allow the evolution in a point of the network to depend non-
locally on those finitely many other points of the network G that have same parametrization
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with respect to the network edges. In other words, we will discuss the strongly coupled elliptic
operator defined by

(Au)j (x) :=
m∑

i=1

∂

∂x

(
cji

∂

∂x
ui

)
(x), x ∈ (0, 1), j = 1, . . . , m, (1.1)

where uj represents a relevant physical quantity on the j th edge of the network. The operator
A is the gradient of the energy functional E defined by

E(u) :=
∫ 1

0

m∑
i,j=1

cji(x)u′
i (x)u′

j (x) dx.

As usual in the context of evolution equations on networks, we also allow for a further,
weak form of interaction given by a generalized Kirchhoff-type law in the ramification nodes.
These two forms of interactions between individual linear elements give rise to a well-defined
system of diffusion or Schrödinger equations. Dwelling on interesting similarities with the
biological theory of neuronal coupling (cf section 5.1), we often call ephaptic and synaptic
the influences that depend on the behaviour of the process in another edge or in another node
of the network, respectively.

It is known that well-posedness of such diffusion and Schrödinger problems can be
proved under quite general conditions on the coefficients (cji), as, e.g., already discussed
in [25, sections 2–3]. Instead, further qualitative properties strongly depend on the coupling
coefficients that are actually considered. In particular, we can show that in spite of the parabolic
nature of the diffusion problem, no maximum principle holds as soon as the ephaptic coupling
is nontrivial—i.e., as soon as the matrix (cji) is non-diagonal. In the second part of this paper,
we discuss the issue of symmetry properties for both diffusion and Schrödinger equations on
networks.

One says that a given physical system exhibits a symmetry if some of its properties
remain invariant under the action of a certain class of transformations. More precisely, in the
Lagrangian formulation of field theory, one says that there exists a (global) symmetry of a
given dynamical system if the Lagrangian L(φ) of the field φ is invariant under all (time- and
space-independent) transformations O that belong to a group O, the so-called gauge group of
the system, i.e., if L(φ) = L(Oφ). The prototypical example is given by the invariance under
rotations of the Laplacian: this implies a symmetry for both the heat and the Schrödinger
equations in R

n, whose gauge group is the orthogonal group O = On. Observe that since
O commutes with the time derivative, in many relevant cases O defines a symmetry for the
evolutionary problem if and only if it is a symmetry for the stationary one, i.e., if and only if
E(φ) = E(Oφ) for all states φ, where E is the energy functional.

In the case of network equations, a new class of symmetries arises in a natural way: the
class of proportions respected pointwise by physical quantities (e.g., temperature, densities,
wavefunctions . . . ) along the edges of a network during the time evolution of a physical process.
To fix the ideas, consider a closed linear Y subspace of C

m (m being the number of edges in
the considered network). Then a linear closed subspace of the state space X2 := (L2(0, 1))m

can be naturally constructed as

Y := {f ∈ X2 : f (x) ∈ Y for a.e. x ∈ (0, 1)}.
We say that P reflects a symmetry of the network diffusion equation if the solution u(·, f ) to
the problem with initial value f satisfies

Pu(t, f ) = u(t,Pf ), t � 0,

cf definition 5.2, where this is formulated in terms of the strongly continuous semigroup
(etA)t�0 generated by the operator A. In section 5.2, we will show that this is the case if and
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only if the orthogonal projection P onto Y commutes with the operators of the semigroup that
governs the parabolic problem. We will also show that in the self-adjoint case this is equivalent
to the fact that L(φ) = L(eisPφ) for all s ∈ R, where L is the Lagrangian of the Schrödinger
system corresponding to the parabolic problem. We will see that P reflects a symmetry for
the parabolic problem if and only if it generates a group of symmetries for the Schrödinger
system, i.e., if it is associated with a conservation law for the quantum graph. In this sense,
(eisP)s∈R can be considered as an equivalent of a gauge group for our dynamical system.

We mention that a notion of symmetries on quantum graphs based on edge permutation
has been discussed by several authors (cf [7, 11, 12, 31]). In a certain sense, they are an
analogue of symmetries induced by the orthogonal group On in R

n. We believe that the class
of symmetries based on proportionality relations which we introduce in the present paper is,
instead, truly new. Our theory shows how to decompose the evolution on the whole network
into processes taking place on (two or, after iteration, more) related, smaller systems, thus
possibly reducing the complexity of the analysis.

Throughout this paper we will consider directed graphs. This may be disorienting at first,
since we are always concerned with isotropic physical processes. In fact, all results about
well-posedness as well as all those concerning positivity and asymptotics of solutions do not
depend on the chosen orientation of the graph underlying the network, as it can be expected
(and as it is proved in section 2). However, we will see in sections 3–4 that symmetry results
do in general depend on orientation: in fact, each orientation of the graph corresponds to
different symmetries.

We will explicitly consider parabolic systems of diffusion equations in the most part of
this paper. However, we will discuss in section 5.2 how symmetry properties of both parabolic
and Schrödinger problems can be related by means of the theory developed in section 3 (see
[6] for more details).

Throughout this paper we only treat finite networks. Most of the results presented here
carry over to the case of graphs with infinite edges, but some proofs have to be modified
in a nontrivial way. We will discuss this more general case in a note which is currently in
preparation.

2. Well-posedness of the network equation

The basic objects we will consider are finite directed graphs without loops, i.e., quadruples G
of the form (V, E, δ0, δ1) where V = {v1, . . . , vn} and E = {e1, . . . , em} are finite disjoint sets
and δ0, δ1 : E → V are mappings such that δ0(e) �= δ1(e) for all e ∈ E. They associate with
an edge e two vertices e(0) := δ0(e) and e(1) := δ1(e), which are called initial and terminal
endpoint of e, respectively. This promptly leads to introducing two matrices I+ = (ι+kj ) and
I− = (ι−kj ) that fully describe the structure of the graph. They are defined by

ι+kj :=
{

1, if ej (0) = vk,

0, otherwise,
and ι−kj :=

{
1, if ej (1) = vk,

0, otherwise.
(2.1)

Observe that if I := I+ − I− is the incidence matrix of the directed graph G as commonly
considered in graph theory. If |ιkj | = 1, then the edge ej is said to be incident to the vertex vk .
We define

�+(vk) := {j ∈ {1, . . . , m} : ej (0) = vk} and �−(vk) := {j ∈ {1, . . . , m} : ej (1) = vk},
and by �(vk) := �+(vk) ∪ �−(vk) we denote the set of indices of all edges that are incident
to vk .
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If there exists an edge e ∈ E such that either e(0) = vk and e(1) = v�, or e(0) = v� and
e(1) = vk , then the vertices vk, v� are said to be adjacent. Similarly, we say that edges ei , ej

are adjacent if there exists a vertex which they are both incident to, i.e., if there exists v ∈ V
such that ei (0) = v or ei (1) = v, and such that ej (0) = v or ej (1) = v.

Additionally, we assign to the graph a metric structure that allows us to treat it as a one-
dimensional manifold and, eventually, to consider partial differential equations describing
evolution processes taking place on it. Throughout this paper, we will always call network
any directed graph endowed with such a metric structure. A similar if not identical approach,
based on von Below’s theory of C2-networks, has been presented in [32].

More precisely, each edge of the graph will be thought of as an interval. For the sake
of consistency with the notation introduced in (2.1), such intervals are parametrized in such
a way that they have length 1. Whenever we consider a square integrable function f acting
on the graph G, we may think of f as a complex-valued function G → C defined almost
everywhere (with respect to the one-dimensional Lebesgue measure) on the edges of the
graph, or equivalently as a vector-valued function (0, 1) → C

m. In this case we will denote
f by (f1, . . . , fm)�, where each fj ∈ L2(0, 1) is a function on ej , i = 1, . . . , m. Whenever
point evaluations of f are well-defined, we define with an abuse of notation fj (vk) := fj (0)

if ι+kj = 1 and fj (vk) := fj (1) if ι−kj = 1.
As already emphasized in section 1, in contrast to the setting which is usual in the

literature on network evolution equations, we discuss a general model and allow for (possibly
non-mutual) interactions of non-adjacent pairs of edges, too. The influence of the process
taking place along the edge ei onto that taking place along ej will be described by the ephaptic
coupling coefficient cji . Such a coefficient is seen as a function on the edge ei : with the same
convention as above we thus denote cji(v�) := cji(0) or cji(v�) := cji(1) if ι+�i = 1 or ι−�i = 1,
respectively.

While the dynamics of our system is described by the coupled diffusion equations in (1.1),
we still have to equip it with suitable conditions in the nodes. To this aim, we introduce two
tensors defined by

I+ := I+ ⊗ I+ and I− := I− ⊗ I−.

We call I := I+ − I− the ephaptic incidence tensor of G. Here ⊗ stands for the usual
Kronecker product of two m × n matrices, defined by (A ⊗ B)

kj

�i := akj · b�i . We denote by
ι
kj

�i , ι̂
kj

�i , ι̌
kj

�i the entries of I,I+,I−, respectively. In other words, ι
kj

�i represents the influence of
the vertex v� as an endpoint of ei on the vertex vk as an endpoint of ej . By construction, such
influences are symmetric, i.e., ι

kj

�i = ι�ikj for all i, j = 1, . . . , m and all k, � = 1, . . . , n.
Solutions of our network diffusion problem have to be continuous in the vertices, i.e.,

ui(vk) = uj (vk) for all i, j ∈ �(vk), k = 1, . . . , n. (2.2)

Because of the continuity condition expressed in equation (2.2), we can and will denote by du
k

the joint value of the components of the vector-valued function u at the node vk .
Furthermore, we allow (possibly non-adjacent) vertices of the graph to influence each

other. A natural interaction condition can be formulated as
m∑

i,j=1

n∑
k=1

ω
kj

�i u
′
i (t, v�) = 0, k = 1, . . . , m.

Here, the weighted incidence tensor W := (
ω

kj

�i

)
, for i, j = 1, . . . , m and �, k = 1, . . . , n, is

defined by

ω
kj

�i := cji(v�)ι
kj

�i .

Moreover, the coefficients ω̌
kj

�i as well as ω̂
kj

�i are defined accordingly.
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In fact, in a fashion similar to that considered in [26] we allow for even more general,
non-local Kirchhoff-type conditions. Such generalized conditions are given by

m∑
i,j=1

n∑
�=1

ω
kj

�i u
′
i (t, v�) =

n∑
�=1

mk�d
u
� , k = 1, . . . , m. (2.3)

Summing up, we investigate the strongly coupled system of initial-boundary value
diffusion problems⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇j (t, x) =
m∑

i=1

(cjiu
′
i )

′(t, x), x ∈ (0, 1), t > 0, j = 1, . . . , m,

ui(t, vk) = uj (t, vk) =: du
k (t), t � 0, i, j ∈ �(vk), k = 1, . . . , n,

n∑
�=1

mk�d
u
� =

m∑
i,j=1

n∑
�=1

ω
kj

�i u
′
j (t, v�), t � 0, k = 1, . . . , n,

uj (0, x) = uj0(x), x ∈ (0, 1), j = 1, . . . , m.

(2.4)

Remark 2.1. By definition of W, whenever C(x) ≡ Id and M = 0 (i.e., if only local, synaptic
interaction occurs), (2.3) reduces to the usual Kirchhoff condition prescribing that in each
node v� incoming and outgoing heat fluxes agree.

We introduce X2 := (L2(0, 1))m, which is a Hilbert space with respect to the canonical
inner product

(f | g)H =
m∑

j=1

∫ 1

0
fj (x)gj (x) dx, f, g ∈ V.

We also consider its dense subspace

V := {f ∈ (H 1(0, 1))m : ∃df ∈ C
n s. t. (I+)�df = f (1), (I−)�df = f (0)},

the space of all H 1-functions that are continuous in the nodes of the graph. The subspace V

is a Hilbert space with respect to the canonical inner product

(f | g)V :=
m∑

i=1

∫ 1

0
(f ′

i (x)g′
i (x) + fi(x)gi(x)) dx, f, g ∈ V.

Observe that V is densely and compactly embedded into X2, since (C∞
c (0, 1))m ⊂ V ⊂

(L2(0, 1))m.
For the sake of later reference, we recall that a complex (possibly non-symmetric)

matrix M = (mij ) is called accretive (resp., dissipative) if there exists µ � 0 such that
Re(Mξ |ξ) � µ|ξ |2 (resp., Re(Mξ |ξ) � −µ|ξ |2) for all ξ ∈ C

m. We call M positive
definite (resp., negative definite) if it is accretive (resp., dissipative) and moreover µ can be
chosen >0.

Throughout the remainder of this paper we will always assume the following.

Assumption 2.2. The coefficients cij are functions of class C1[0, 1]. The matrix C(x) =
(cij (x)) is positive definite, uniformly on the interval [0, 1], i.e., there exists µ > 0 such that

Re(C(x)v | v)C
m := Re

m∑
i,j=1

cij (x)vjvi � µ|v|2
C

m for all x ∈ [0, 1], v ∈ C
m.

Observe that assumption 2.2 is weaker than assumption 2.3 of [9].
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Let us now introduce the Kirchhoff operators 	+,	− : (H 2(0, 1))m → C
n defined by

	+u :=

⎛
⎜⎜⎜⎜⎜⎜⎝

m∑
i,j=1

n∑
�=1

ω̂
j1
�i u

′
i (v1)

...
m∑

i,j=1

n∑
�=1

ω̂
jn

�i u′
i (vn)

⎞
⎟⎟⎟⎟⎟⎟⎠

, 	−u :=

⎛
⎜⎜⎜⎜⎜⎜⎝

m∑
i,j=1

n∑
�=1

ω̌
j1
�i u

′
i (v1)

...
m∑

i,j=1

n∑
�=1

ω̌
jn

�i u′
i (vn)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and a differential operator on X2 by

A :=

⎛
⎜⎝

d
dx

(
c11

d
dx

) · · · d
dx

(
c1m

d
dx

)
...

. . .
...

d
dx

(
cm1

d
dx

) · · · d
dx

(
cmm

d
dx

)
⎞
⎟⎠ (2.5)

with domain

D(A) := {f ∈ (H 2(0, 1))m ∩ V : 	+f − 	−f = Mdf }, (2.6)

for the matrix M = (mkh) introduced in (2.3). Since D(A) ⊂ V , functions in D(A) are
continuous in the nodes.

With the aim of pursuing a variational approach to our problem, we introduce a densely
defined sesquilinear form a defined by

a(f, g) := (Cf ′ | g′)X2 − (Mdf | dg)C
n =

m∑
i,j=1

∫ 1

0
cij (x)f ′

j (x)g′
i (x) dx −

n∑
k,�=1

mk�d
f

� d
g

k

(2.7)

for f, g ∈ V , which will be later shown to be related to the operator A.
A variational approach to our motivating network parabolic problem has also been pursued

in [25]. The following generation result is quite similar to [25, theorem 3.7].

Theorem 2.3. The operator associated with the form a generates a compact, analytic
semigroup on X2. This semigroup is contractive (hence asymptotically almost periodic,
too) if M is dissipative. If M is dissipative, then the semigroup is strongly stable if and only
if M∗11 �= 0. The semigroup is uniformly exponentially stable if M is negative definite. The
semigroup is self-adjoint if and only if the matrices C(x), x ∈ [0, 1], and M are self-adjoint.

Observe that the last result also characterizes well-posedness of the quantum graph
associated with (2.4).

We stress that if the semigroup is contractive (resp., uniformly exponentially stable), then
M is not necessarily dissipative (resp., negative definite), as one sees already in the case of a
network consisting of a single interval, if one considers the function f defined by f (x) = x

and M = Id.

Proof. We show that the sesquilinear form a is continuous and X2-elliptic, i.e.,

• |a(f, g)| � K1 ‖f ‖V ‖g‖V for some constant K1 > 0 and all f, g ∈ V , and
• there exist α > 0 and ω ∈ R such that Re a(f, f ) � α‖f ‖2

V − ω‖f ‖2
X2 for all f ∈ V,

respectively. In fact, the continuity of a is a direct consequence of the Cauchy–Schwarz
inequality in X2 and of the continuous embedding of V into (C[0, 1])m, and the constant K1

is the maximum over x ∈ [0, 1] of the matrix norm ‖C(x)‖.
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In order to prove X2-ellipticity of a, it suffices to observe that (Cf ′ | g′)X2 clearly defines
an X2-elliptic form if (and only if) C(x) is a positive definite matrix for a.e. x ∈ [0, 1], which
is assumption 2.2. Since there exists K2 > 0 such that

max
x∈[0,1]

|f (x)| � K2‖f ‖
1
2

L2‖f ‖
1
2

H 1 , f ∈ H 1(0, 1),

cf [8, corollary 4.11], it follows that the space of continuous functions over the graph is
an interpolation space between (H 1(0, 1))m and (L2(0, 1))m. It then suffices to apply
[27, lemma 2.1] in order to treat the lower order perturbation given by (Mdf | dg)C

n .
Accordingly, by [29, proposition 1.51 and theorem 1.52] the operator associated with a
generates an analytic semigroup of angle π

2 − arctan K1.
Observe that by the Rellich–Kondrachov theorem the embedding of V into X2 is

compact, thus the semigroup is compact. A direct computation shows that a is accretive
(i.e., Re a(f, f ) � 0 for all f ∈ V ) if M is dissipative; and that a is coercive (i.e., it is X2-
elliptic with ω = 0) if M is negative definite. In the first case, the semigroup associated with a
is contractive, and by [2, theorem 5.5.6] also asymptotically almost periodic. In the latter case,
the semigroup is uniformly exponentially stable since the shifted form a −α(·|·)V is accretive.
Finally, let M be dissipative. Then, by [10, example V.2.23] the semigroup associated with
a is strongly stable if and only if 0 is not an eigenvalue of the operator associated with the
adjoint form a∗. First of all, observe that if A∗f = 0, then necessarily

µ‖f ′‖2
X2 � (Cf ′|f ′)X2 = (Mdf |df )C

n � 0,

thus f is a constant, i.e., f = c11. Observe now that 0 is an eigenvalue of A∗ (and thus
necessarily with eigenfunction 11) if and only if

0 = (A∗11|g) = −a∗(11, g) = (M∗11|dg)C
n for all g ∈ V,

and since the nodal values dg of g are arbitrary vectors of C
n, this is equivalent to saying that

M∗11 = 0. Finally, a is self-adjoint if and only if so are the coefficient matrices. �

Remark 2.4. It is known that the operator associated with the form a cannot generate an
analytic, quasi-contractive semigroup unless a is X2-elliptic, see [1, section 5.3.4], and hence
unless assumption 2.2 holds.

In order to show the well-posedness of our motivating problem, we need to make sure
the operator associated with a is actually A as introduced in (2.5)–(2.6). Having proved this,
theorem 2.3 becomes a generation result for A, and in the remainder of this paper we will
denote by (etA)t�0 the semigroup introduced above. A corresponding identification in the
uncoupled case of C = 0 has been showed, e.g., in [26].

Proposition 2.5. The operator associated with a is (A,D(A)) as defined in (2.5)–(2.6).

Proof. Denote by (B,D(B)) the operator associated with the form a, which by definition is
given by

D(B) := {f ∈ V : ∃g ∈ X2 s.t. a(f, h) = (g | h)H∀h ∈ V },
Bf := −g.

We first show that A ⊂ B. Fix f ∈ D(A). Then for all h ∈ V

a(f, h) =
m∑

i,j=1

∫ 1

0
cji(x)f ′

i (x)h′
j (x) dx −

n∑
k,�=1

mk�d
f

k dh
�

=
m∑

i,j=1

[cjif
′
i vj ]1

0 −
m∑

i,j=1

∫ 1

0
(cjif

′
i )

′(x)hj (x) dx −
n∑

k,�=1

mk�d
f

� dh
k .
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Using now the definition of the incidence tensor I = Î − Ǐ we can write
m∑

i,j=1

[cjif
′
i hj ]1

0 =
m∑

i,j=1

n∑
�,k=1

cji(v�)
(
ι̂
kj

�i − ι̌
kj

�i

)
f ′

i (v�)hj (vk)

=
m∑

i,j=1

n∑
k,�=1

ω
kj

�i f
′
i (v�)hj (vk)

=
n∑

k=1

dh
k

m∑
i,j=1

n∑
�=1

ω
kj

�i f
′
i (v�)

=
n∑

�,k=1

mk�d
f

� dh
k .

As a consequence

a(f, h) = −
m∑

i,j=1

∫ 1

0
(cjif

′
i )

′(x)hj (x) dx =: ((Cf ′)′ | h).

Thus, for all h ∈ V there exists g = Af ∈ X2 such that

a(f, h) = −
m∑

i,j=1

∫ 1

0
(cjif

′
i )

′(x)hj (x) dx = −(g | h)H .

This completes the proof of the first inclusion. Conversely, let f ∈ D(B). By definition there
exists g ∈ V such that a(f, h) = −(g | h)H for all h ∈ V , and accordingly

m∑
i,j=1

∫ 1

0
cji(x)f ′

i (x)h′
j (x) dx −

n∑
�,k=1

m�kd
f

k dh
� = −

m∑
i=1

∫ 1

0
gi(x)hi(x) dx.

Integrating by part the left-hand side, we obtain that

−
m∑

i,j=1

∫ 1

0
(cjif

′
i )

′(x)hj (x) dx +
n∑

k=1

dh
k

m∑
i,j=1

n∑
�=1

ω
kj

�i f
′
i (v�)

−
n∑

k,�=1

mk�d
f

� dh
k = −

m∑
i=1

∫ 1

0
gi(x)hi(x) dx,

which holds for all h ∈ V . In particular, considering h ∈ (H 1
0 (0, 1))m vanishing on all but

one edge of the network, we conclude that

gi(x) =
m∑

j=1

(cjif
′
j )

′(x) for all x ∈ (0, 1) and all i = 1, . . . , m.

Similarly, considering h with arbitrary nodal values and arbitrary small X2-norm, we obtain
m∑

i,j=1

n∑
�=1

ω
kj

�i f
′
i (v�) −

n∑
�=1

mk�d
f

� = 0 for all k = 1, . . . , n.

This shows that f ∈ D(A) and completes the proof. �

Having proved analytical well-posedness in an L2-space, one could try to extend this result
to further Lp-spaces, p �= 2. To this end, a common strategy is to show that the semigroup
leaves invariant the unit ball of L∞, so that each operator etA, t � 0 is contractive on all Lp

8
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spaces, p ∈ [2,∞], by virtue of Riesz–Thorin interpolation theorem. This has already been
accomplished in the case of pure synaptic coupling (cf [13, 26]). However, we show in the
following that this approach cannot work in the case of nontrivial ephaptic coupling.

Theorem 2.6. The following assertions hold.

(a) The semigroup (etA)t�0 is real, i.e., it leaves invariant the subspace of real-valued function
of X2, if and only if

• C(x) ∈ Mm(R) for all x ∈ [0, 1] and
• M ∈ Mn(R).

(b) The semigroup (etA)t�0 is positive, i.e., it leaves invariant the positive cone of X2, if and
only if

• C(x) is a real valued, diagonal matrix for all x ∈ [0, 1] and
• the matrix M has real entries that are positive off-diagonal.

In this case, the semigroup is also irreducible if the graph is connected.
(c) The semigroup (etA)t�0 is X∞-contractive (resp., X1-contractive), i.e., it leaves invariant

the unit ball of X∞ (resp., of X1), if and only if

• C(x) is a real valued, diagonal matrix for all x ∈ [0, 1] and
• the matrix M satisfies Re mkk +

∑
h �=k |mkh| � 0 (resp., Re mkk +

∑
h �=k |mhk| � 0)

for all k = 1, . . . , n.

Proof. As shown in the proof of theorem 2.3 the form a is densely defined, continuous and
X2-elliptic. Thus, by [29, proposition 2.5], and by a simple rescaling argument, the semigroup
(eta)t�0 is real if and only if Re f ∈ V and a(Re f, Rg f ) ∈ R for all f ∈ V . Thus, an easy
computation shows that reality of the coefficients C,M is sufficient.

Conversely, assume (etA)t�0 to be real. Let f0 ∈ H 1
0 (0, 1) real valued and such that its

support of fj agrees with [a, b] ⊂ (0, 1). Define f as a function such that fi = if0, fj = f0,
and all further coordinates vanish. By the above characterization of real semigroups one
has a(Re f, Rg f ) = ∫ b

a
cij (x)|f ′

0(x)|2 dx ∈ R. Since this construction can be repeated for
arbitrary a, b and i, j , we deduce that cij (x) is a real number for all x ∈ (0, 1), and by
continuity also for all x ∈ [0, 1].

Let now f ∈ V such that d
f

� = 1 and d
f

k = i. If f vanishes in all further nodes,
a(Re f, Rg f ) = (C(Re f )′ | (Rg f )′)X2 −mk�. As shown above, C(x) is a real matrix for all
x ∈ [0, 1] and therefore (C(Re f )′ | (Rg f )′)X2 ∈ R. Thus, mk� ∈ R for all k, � = 1, . . . , n.

In a similar fashion and taking into account [26, theorem 3.5] and [9, proposition 3.6],
one can prove the claimed characterizations of positivity, X∞-contractivity and, by duality,
X1-contractivity of (etA)t�0. �

Additional properties of boundary regularity of solutions of (2.4) can be deduced by the
fact that the analytic semigroup operators etA map X2 into

⋃∞
k=1 D(Ak) for all t > 0.

Proposition 2.7. If u is the solution to (2.4), the following assertions hold.

(1)
∑m

j=1(ciju
′
j )

′ is continuous in the nodes and satisfies a Kirchhoff law, i.e.,

m∑
ι=1

(ciιu
′
ι)

′(t, v�)=
m∑

ι=1

(cjιu
′
ι)

′(t, v�) =: d
(cu′)′
� (t), t > 0, i, j ∈ �(v�), � = 1, . . . , n,

n∑
�=1

mk�d
(cu′)′
� (t) =

m∑
ι,i,j=1

n∑
�=1

ω
kj

�ι (cjιu
′
ι)

′′(t, v�), t > 0, k = 1, . . . , n.

9
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(2) If furthermore the coefficients matrix C is diagonal, then u is of class C∞ and its derivatives
of even and odd order satisfy for all N ∈ N

u
(2N)
i (t, v�) = u

(2N)
j (t, v�) =: du(2N)

� (t), t > 0, i, j ∈ �(v�), � = 1, . . . , n,

n∑
�=1

mk�d
u(2N)

� (t) =
m∑

i,j=1

n∑
�=1

ω
kj

�ι u
(2N+1)
j (t, v�), t � 0, k = 1, . . . , n.

3. Symmetry properties

In this section, we will characterize invariance of a special class of closed linear subspaces of
the space X2 under the action of (etA)t�0. As mentioned in the introduction, the material in
this and the following section seems to be new.

The invariance of a closed subspace under the action of a semigroup can be characterized
as a direct consequence of a result due to Ouhabaz (see [29, theorem 2.2]). For the sake of
self-containedness we present it in the form we will use in the following.

Theorem 3.1. Let a : V × V → C be a continuous, elliptic sesquilinear form on a Hilbert
space H, and consider an orthogonal projection P on H. Then RgP is invariant under the
action of the semigroup (etA)t�0 associated with a if and only if

(1) PV ⊂ V and
(2) a(f, g) = 0 for all f ∈ RgP ∩ V, g ∈ KerP ∩ V .

Observe that in the view of [9, corollary 5.2], the invariance results for subspaces deduced
by means of theorem 3.1 can be directly extended to a large class of nonlinear, strip-like
subsets of X2.

A relevant class of subspaces of X2 can be constructed as follows: let Y be a subspace of
C

m and consider

Y := {f ∈ X2 : f (x) ∈ Y for a.e. x ∈ (0, 1)}. (3.1)

We look for criteria for invariance of the subspace Y of X2 under the action of the semigroup
(etA)t�0. Denoting by K the orthogonal projection of C

m onto Y, the orthogonal projection
PK of X2 onto Y satisfies

(PKf )(x) = K(f (x)) for a.e. x ∈ (0, 1). (3.2)

In particular, KerPK and RgPK are isomorphic to L2(0, 1; KerPK) and L2(0, 1; RgPK),
respectively.

The aim of this section is to discuss problems that are similar to that presented in the
following, which also shows an intuitive relation between invariance and symmetry properties.

Example 3.2. Consider a graph G consisting of two edges, both outgoing from a common
vertex v, i.e., an outbound star. Let C = Id and M = 0. Then the form a is associated with the
Laplacian with a Kirchhoff condition in v1 and Neumann conditions in the boundary nodes.
Do initial data that are symmetric with respect to v give rise to solutions to the diffusion
problem that are also symmetric with respect to v? We can reformulate this question and ask
whether the closed linear subspace Y := {f ∈ X2 : f1 = f2} is invariant under the action
of the semigroup (etA)t�0. In fact, Y = RgPK , where K is the 2 × 2 matrix whose entries
equal 1

2 .

Let us reformulate the criterion in theorem 3.1 in our special case. After rewriting
the form a as a(f, g) = (Cf ′ | g′)X2 − (Mdf | dg)C

n , observe that the denseness of

10
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Vx := {f ∈ V : df = x} in X2 for each x ∈ C
n implies that the condition (2) of theorem 3.1

holds if and only if

(Cf ′ | g′)X2 = 0 for all f ∈ RgP ∩ V, g ∈ KerP ∩ V (3.3)

and

(Mdf | dg)C
n = 0 for all f ∈ RgP ∩ V, g ∈ KerP ∩ V. (3.4)

We will refer to condition (1) of theorem 3.1 as to the admissibility of the projection PK

(or sometimes of K), and to conditions (3.3) and (3.4) as the orthogonality condition with
respect to PK of the coefficient matrix C and of the matrix M, respectively. Characterizing
admissibility and orthogonality is aim of the following subsections.

3.1. Admissibility

We will now investigate the admissibility of projections of the type PK in terms of the matrix
K and of (the incidence matrix I of) the graph G.

Lemma 3.3. Let the matrix K be an orthogonal projection of C
d and the let the set Y be a

linear subspace of C
d . Then the following assertions are equivalent.

(a) KY ⊂ Y ;
(b) Y = Ker K ∩ Y ⊕ Rg K ∩ Y .

Proof. ‘(b) ⇒ (a)’. Let u ∈ Y , i.e., u = u1 + u2, where u1 ∈ Ker K ∩ Y and u2 ∈ Rg K ∩ Y .
Then Ku = Ku1 + Ku2 = u2 ∈ Y , which proves the claim.
‘(a) ⇒ (b)’. Let B1 = {b1

i : i = 1, . . . , r0} be a basis of Ker K ∩ Y and B2 = {b2
i :

i = 1, . . . , q0} be a basis of Rg K ∩ Y . Extend B1 and B2 to a basis of Ker K and Rg K ,
respectively, denoted by

B1� = B1 ∪ {
b1

i : i = r0 + 1, . . . , r
}

and

B2� = B2 ∪ {
b2

j : j = q0 + 1, . . . , q
}
.

Observe that C
d = Ker K ⊕ Rg K since K is an orthogonal projection. Let u ∈ Y . Then

u =
r∑

i=1

αib
1
i +

q∑
i=1

βib
2
i

with uniquely determined coefficients αi, βj , i = 1, . . . , r, j = 1, . . . , q. Now

Ku −
q0∑

i=1

βib
2
i =

q∑
i=q0+1

βib
2
i ∈ Rg K ∩ Y,

since Ku ∈ Y by assumption, and hence βj = 0, j = q0 + 1, . . . , q by definition of B2�.
Analogously it can be shown that αi = 0, i = r0 + 1, . . . , r by considering (Id − K)u. This
shows u ∈ Ker K ∩ Y ⊕ Rg K ∩ Y . �

We define the 2m × n matrix Ĩ and the 2m × 2m matrix K̃ as

Ĩ := (I+, I−)� =
(

(I+)�

(I−)�

)
and K̃ :=

(
K 0
0 K

)
. (3.5)

Observe that K̃ is an orthogonal projection of C
2m.

11



J. Phys. A: Math. Theor. 41 (2008) 055102 S Cardanobile et al

Proposition 3.4. If the graph G is connected, then the following assertions are equivalent.

(a) The projection PK is admissible.
(b) The range of Ĩ is invariant under K̃ , i.e., K̃ Rg Ĩ ⊂ Rg Ĩ.

(c) There exists a basis of Rg Ĩ consisting of eigenvectors of K̃ .

Proof. We start by proving the equivalence of (a) and (b). Recall that for every f ∈ V there
exists a vector df ∈ C

n such that

(I+)�df = f (0), (I−)�df = f (1).

The admissibility of the projection is equivalent to the fact that for every f ∈ V there exists a
vector dPKf ∈ C

n such that

(I+)�dPKf = PKf (0) = Kf (0), (I−)�dPKf = PKf (1) = Kf (1).

Inserting the first equation into the second and observing that for all u ∈ C
n there exists a

function f ∈ (H 1(0, 1))m which is continuous in the nodes such that df = u one obtains that
(a) is equivalent to the fact that for all u ∈ C

n there exists v ∈ C
n such that

(I+)�v = K(I+)�u, (I−)�v = K(I−)�u,

which can equivalently be stated as

K̃ Rg Ĩ ⊂ Rg Ĩ.

The first equivalence is now proved. To see the second equivalence, observe first that
the existence of the claimed basis is equivalent to Rg Ĩ being decomposable into Rg Ĩ =
(Ker K̃ ∩ Rg Ĩ) ⊕ (Rg K̃ ∩ Rg Ĩ). Now one can apply lemma 3.3 setting Y := Rg Ĩ and
K := K̃. �

Although the above theorem fully characterizes admissible projections, its direct
applications is seldom feasible. In the remainder of this subsection we collect two necessary
conditions.

Let us fix some notation. For A ⊂ {1, . . . , m} we define the vector

11A := (ai)i=1,...,m, where ai :=
{

1 i ∈ A,

0 i �∈ A (3.6)

and write 11 := 11A in the special case of A = {1, . . . , m}.
Lemma 3.5. Let the graph G be connected and the projection PK be admissible. Then 11 is
an eigenvector of K.

Proof. By hypothesis PKV ⊂ V. Consider the function 11 : x �→ (1, . . . , 1)� and observe
that PK11(x) = K11 and 11 ∈ V . This shows that on each edge PK11 is a constant function, and
since PK11 ∈ V all these constants coincide, hence PK11 = a11 for an a ∈ C. �

Remark 3.6. Observe that K11 ∈ {0, 11}, since the only eigenvalues of an orthogonal projection
are 0 and 1, and that 11 ∈ Ker (Id − K) if 11 ∈ Rg K . Moreover, K is admissible if and only if
Id − K is admissible. Therefore, we may assume 11 ∈ Rg K without loss of generality.

Lemma 3.5 can be used to investigate the invariance of subgraphs.

Example 3.7. If the graph G is connected, then there exists no proper subgraph G′ of G such
that the linear subspace Y := {f ∈ X2 : f|G′ = 0} of the functions vanishing on G′ is invariant
under the action of (etA)t�0.

12
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Without loss of generality we may assume that the subgraph G′ corresponds to the edges
em′+1, . . . , em. The projection onto Y is given by PK , where

K =
(

Idm′ 0
0 0

)
.

But 11 is not an eigenvector of K. This result is independent of the matrices C and M.

Lemma 3.8. Consider a decomposition G = G1 ∪ G2 into subgraphs such that every node is
contained either in G1 or G2. On G1, fix a non-admissible orthogonal projection PK1 . Then
the projection PK on G defined by

K :=
(

K1 0
0 Id

)

is not admissible.

Proof. Since PK1 is not admissible, there exists a function f ∈ V1 such that PK1f �∈ V1, i.e.,
such that the continuity condition is violated in a node vk0 . It is possible to extend the function
f to a function f̃ on the whole graph, such that df̃ = 0 in all nodes of G2. Then the function
PKf̃ does not satisfy the continuity condition in vk0 , either. �

3.2. Orthogonality condition—the matrix C

We are now going to characterize the coefficient matrices C which satisfy the orthogonality
condition; in fact, we will show that the orthogonality condition is equivalent to the invariance
of the range of PK under the coefficient matrix C.

Proposition 3.9. Let the sesquilinear form a on X2 be defined as in (2.7), with M = 0. Then
the following assertions are equivalent.

(a) The matrix C satisfies the orthogonality condition (3.3) with respect to PK .
(b) The range of K is invariant under the action of C(x) for all x, i.e.,

C(x) Rg K ⊂ Rg K for all x ∈ [0, 1]. (3.7)

Proof. Since the space X2 can be decomposed into X2 = RgPK ⊕ Rg(Id − PK), the
orthogonality condition (3.3) is equivalent to a(PKu, (Id−PK)v) = 0 for all u, v ∈ V . Using
the linearity of the derivative and the self-adjointness of the orthogonal projection K, one can
compute

a(PKu, (Id − PK)v) =
∫ 1

0
(C(x)Ku′(x) | (Id − K)v′(x)) dx

=
∫ 1

0
((Id − K)C(x)Ku′(x) | v′(x)) dx,

where the inner product is the standard inner product in C
m. By a localization argument∫ 1

0 ((Id − K)C(x)Ku′(x) | v′(x)) dx = 0 holds for every u, v ∈ V if and only if
(Id − K)C(x)K = 0 for all x ∈ [0, 1], i.e., C(x)K = KC(x)K for all x ∈ [0, 1]. Since K is
a projection this is equivalent to condition (3.7). �

13
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3.3. Orthogonality condition—the matrix M

Next, we characterize the orthogonality condition for the matrix M, i.e., we want to find
equivalent conditions to (3.4), where (3.4) can alternatively be stated as

(MdPKf | d(Id−PK)g) = 0 for all f, g ∈ V. (3.8)

If it is satisfied, we will say that the matrix M satisfies the orthogonality condition with respect
to K, frequently omitting any reference to K. For these investigations we introduce the matrix

M := ĨD−1MD−1Ĩ�,

where we denote D is the diagonal matrix with diagonal entries |�(vk)|, the degrees of the
nodes vk . Please note that the matrix M only depends on M and on the graph structure, but
does not depend on the orthogonal projection K.

Lemma 3.10. If the graph G has no isolated nodes, then the following assertions hold.

(1) df = D−1Ĩ�(f (0), f (1))� for every f ∈ V .
(2) Rg Ĩ = {(f (0), f (1))� ∈ C

2m : f ∈ V }.
Proof. First we will prove the formula

I+(I+)� = diag(�+(vk))k=1,...,n. (3.9)

In fact,

(I+(I+)�)lk =
m∑

i=1

I+
liI+

ki .

Since each edge originates from exactly one node, we obtain that I+
liI+

ki = 0 for all k �= l.
Thus,

m∑
i=1

I+
liI+

ki =

⎧⎪⎨
⎪⎩

m∑
i=1

(
I+

ki

)2
, if k = l,

0, otherwise.

Since I+
ki equals 1 exactly �+(vk) times and equals 0 otherwise, the proof of formula (3.9) is

complete. The analogous formula I−(I−)� = diag(�−(vk))k=1,...,n can be proved likewise.
As a consequence, we obtain

D = I+(I+)� + I−(I−)� = Ĩ�Ĩ.

To prove (1), let f ∈ V . By definition, there exists df ∈ C
n such that

Ĩdf =
(

f (0)

f (1)

)
. (3.10)

We show that the vector D−1Ĩ�(
f (0)

f (1)

)
satisfies the condition (3.10) as well. A direct

computation shows that

ĨD−1Ĩ�
(

f (0)

f (1)

)
= ĨD−1Ĩ�Ĩdf = ĨD−1Ddf = Ĩdf =

(
f (0)

f (1)

)
.

By the uniqueness of df , the proof is complete.
For (2) note that since {df : f ∈ V } = C

n,

Rg Ĩ = {Ĩv : v ∈ C
n} = {Ĩdf : f ∈ V } =

{(
f (0)

f (1)

)
: f ∈ V

}
.

This completes the proof. �
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Proposition 3.11. Assume the orthogonal projection PK to be admissible. Then the matrix M
satisfies the orthogonality condition (3.8) if and only if

RgMK̃ Ĩ ⊂ Rg K̃. (3.11)

Proof. We will use the orthogonality condition as stated in (3.8). By lemma 3.10.(1), one
obtains for all f, g ∈ V

(MdPKf | d(Id−PK)g) =
(

MD−1Ĩ�K̃

(
f (0)

f (1)

)
| D−1Ĩ�(Id − K̃)

(
g(0)

g(1)

))
.

By lemma 3.10.(2), the orthogonality condition is then equivalent to

(MD−1Ĩ�K̃v | D−1Ĩ�(Id − K̃)w) = 0, ∀ v,w ∈ Rg Ĩ. (3.12)

Since Ĩ has real entries and D−1 and (Id − K) are self-adjoint, (3.12) is equivalent to

((Id − K̃)ĨD−1MD−1Ĩ�K̃v | w) = 0, ∀v,w ∈ Rg Ĩ,

i.e., using the definition of M
((Id − K̃)MK̃v | w) = 0, ∀v,w ∈ Rg Ĩ.

This can be equivalently expressed as

((Id − K̃)MK̃PRg Ĩv | PRg Ĩw) = 0, ∀v,w ∈ C
m,

where PRg Ĩ is the orthogonal projection onto the range of Ĩ. Since PRg Ĩ is self-adjoint,

((Id − K̃)MK̃PRg Ĩv | PRg Ĩv) = (PRg Ĩ(Id − K̃)MK̃PRg Ĩv | w)

for all v,w ∈ C
m. In fact, we have just proved that the orthogonality condition (3.8) is

equivalent to

PRg Ĩ(Id − K̃)MK̃PRg Ĩ = 0,

which is, finally, the same as

PRg ĨMK̃PRg Ĩ = PRg ĨK̃MK̃PRg Ĩ . (3.13)

Equation (3.13) is the key to prove the claim. Because of the admissibility of K, Rg K̃ Ĩ ⊂ Rg Ĩ
by proposition 3.4. Moreover, one sees by the definition of M that RgM ⊂ Rg Ĩ,
which implies Rg K̃M ⊂ Rg Ĩ. Considering both inclusions, one obtains that (3.13) is
equivalent to MK̃PRg Ĩ = K̃MK̃PRg Ĩ . In fact, we are asking that K̃ acts as the identity
matrix on RgMK̃PRg Ĩ = RgMK̃ Ĩ, i.e., the orthogonality condition (3.8) is equivalent to
RgMK̃ Ĩ ⊂ Rg K̃ . This concludes the proof. �

Although it is easy to check those range inclusions numerically for concrete examples,
the following sufficient conditions may be more convenient in some cases.

Corollary 3.12. Consider an admissible projection PK . If RgMĨ ⊂ Rg K̃ or RgMK̃ ⊂
Rg K̃ , then M satisfies the orthogonality condition.

Proof. To see that RgMĨ ⊂ Rg K̃ is sufficient, observe that admissibility of PK implies
Rg K̃ Ĩ ⊂ Rg Ĩ, and hence condition (3.11) is fulfilled. Moreover, RgMK̃ ⊂ Rg K̃ is also
sufficient by a similar argument, since Rg K̃ Ĩ ⊂ Rg K̃ . �

As an application we give a simpler characterization for a special subspace of C
m in the

case of a bipartite graph. More precisely, we consider the smallest subspace of C
m whose

orthogonal projection K satisfies K11 = 11, i.e., Y = {(c, c, . . . , c)T | c ∈ C}.
15
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Proposition 3.13. Let the graph G be bipartite. Then M satisfies the orthogonality condition
with respect to the orthogonal projection K := (

1
m

)
i,j=1,...,m

if and only if there exist values
(αij )i,j=1,2 such that

α11|�(v�)| =
n1∑

k=1

m�k, α12|�(v�)| =
n∑

k=n1+1

m�k for all � = 1, . . . , n1, and

α21|�(v�)| =
n1∑

k=1

m�k, α22|�(v�)| =
n∑

k=n1+1

m�k for all � = n1 + 1, . . . , n.

Proof. First we show Rg K̃ Ĩ = Rg K , and then we prove a characterization of those matrices
M that leave invariant the subspace Rg K̃ . Then the claim will follow by proposition 3.11.

Without loss of generality we may assume that for k = 1, . . . , n1 the node vk has only
outgoing edges, i.e., �(vk) = �+(vk), and that for k = n1 + 1, . . . , n the node vk has only
incoming edges, i.e., �(vk) = �−(vk), reordering the nodes otherwise. We are going to prove

Rg K̃ Ĩ = Rg K̃ = 〈11{1,...,m}, 11{m+1,...,2m}〉. (3.14)

The second equality follows from the definition of K. Moreover, Rg K̃ Ĩ ⊂ Rg K̃ is obvious.
Since there exists f ∈ V such that df = 11{1,...,n1}, lemma 3.10.(2) implies 11{1,...,m} ∈ Rg Ĩ.
Analogously df = 11{n1+1,...,n} yields 11{m+1,...,2m} ∈ Rg Ĩ. We have already observed that
11{1,...,m} and 11{m+1,...,m} are invariant under K̃ , which implies

〈11{1,...,m}, 11{m+1,...,m}〉 ⊂ Rg K̃ Ĩ,

and this proves the claim (3.14).
Next, we characterize the matrices M which leave Rg K̃ invariant. For this we use the

bipartite decomposition of

Mw := D−1MD−1 =
(

mij

|�(vk)||�(v�)|
)

k,�=1,...,n

which is induced by the bipartite decomposition of the graph G, i.e., we write

Mw =
(

Mw
11 Mw

12

Mw
21 Mw

22

)
,

where Mw
11 ∈ Mn1,n1 ,M

w
12 ∈ Mn1,n−n1 ,M

w
21 ∈ Mn−n1,n1 and Mw

22 ∈ Mn−n1,n−n1 .
Moreover, since G is bipartite, the incidence matrices decompose into

I+ =
(
I+

1

0

)
and I− =

(
0
I−

2

)
,

where I+
1 ∈ Mn1,m and I+

2 ∈ Mn−n1,m.
We will use the above decompositions in order to obtain a useful formula for M. Using

the definition of Ĩ, as formulated in (3.5), we first compute

M = ĨMwĨ� = Ĩ(MwI+,MwI−) =
(
I+�

MwI+ I+�
MwI−

I−�
MwI+ I−�

MwI−

)
,

which yields, inserting the decompositions,

M =
(
I+�

1 Mw
11I+

1 I+�
1 Mw

12I
−
2

I−�
2 Mw

21I+
1 I−�

2 Mw
22I

−
2

)
.
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It is possible to identify the block-matrices appearing in the above expression. In fact, the
following identities hold.

I+�
1 Mw

11I+
1 =

(
mei (0)ej (0)

|�(ei (0)||�(ej (0))|
)

i,j=1,...,m

I−�
2 Mw

22I−
2 =

(
mei (1)ej (1)

|�(ei (1)||�(ej (1))|
)

i,j=1,...,m

I+�
1 Mw

12I−
2 =

(
mei (0)ej (1)

|�(ei (0)||�(ej (1))|
)

i,j=1,...,m

I−�
2 Mw

21I+
1 =

(
mei (1)ej (0)

|�(ei (1)||�(ej (0))|
)

i,j=1,...,m

.

Here we write mei (0)ej (0) := mk� if ei (0) = vk, ej (0) = v�, and analogously for ej (1).
We have already observed that {11{1,...,m}, 11{m+1,...,2m}} is a basis of Rg K̃ . Using the above

decompositions, one can compute

M11{1,...,m} =
⎛
⎝

(
I+�

1 Mw
11I+

1

)
11C

m(
I−�

2 Mw
21I+

1

)
11C

m

⎞
⎠ =

⎛
⎝

(∑m
j=1

mei (0)ej (0)

|�(ei (0))||�(ej (0))|
)

i=1,...,m(∑m
j=1

mei (1)ej (0)

|�(ei (1))||�(ej (0))|
)

i=1,...,m

⎞
⎠ .

In these sums each ej (0) appears exactly |�+(ej (0))| times. Collecting the same summands
we may write

M11{1,...,m} =
⎛
⎝

(∑n
k=1 |�+(vk)| mei (0)k

|�(ei (0))||�(vk)|
)

i=1,...,m(∑n
k=1 |�+(vk)| mei (1)k

|�(ei (1))||�(vk)|
)

i=1,...,m

⎞
⎠ .

In fact, since |�+(vk)| appears as a factor, only for the first n1 vertices the summand does not
vanish. Thus, we see that

M11{1,...,m} =
⎛
⎝

(∑n1
k=1 |�−(vk)| mei (0)k

|�(ei (0))||�(vk)|
)

i=1,...,m(∑n1
k=1 |�−(vk)| mei (1)k

|�(ei (1))||�(vk)|
)

i=1,...,m

⎞
⎠ .

Since |�+(vk)| = |�(vk)| for k = 1, . . . , n1,

M11{1,...,m} =
⎛
⎝

(∑n1
k=1

mei (0)k

|�(ei (0))|
)

i=1,...,m(∑n1
k=1

mei (1)k

|�(ei (1))|
)

i=1,...,m

⎞
⎠ .

We can easily check whether M11{1,...,m} ∈ Rg K̃ . Using (3.14) one sees that this is the
case if and only if sums above do not depend on ei , i.e., M11{1,...,m} ∈ Rg K̃ if and
only if there exist α11, α21 ∈ C such that α11|�(v�)| = ∑n1

k=1 m�k for all � = 1, . . . , n1,
and α21|�(v�)| = ∑n1

k=1 m�k for all � = n1 + 1, . . .. By a similar computation, one can
also see that M11{m+1,...,2m} ∈ Rg K̃ if and only if there exist α12, α22 ∈ C such that
α12|�(v�)| = ∑n

k=n1+1 m�k for all � = 1, . . . , n1, and α22|�(v�)| = ∑n
k=n1+1 m�k for all

� = n1 + 1, . . . , n. This completes the proof. �

Example 3.14. Consider a regular, bipartite graph G, with the bipartite node decomposition
G = {v1, . . . , vn1} ∪ {vn1+1, . . . , vn}. Set n2 := n − n1 and consider row-stochastic matrices
Mij ∈ Mni,nj

. Then for arbitrary αij ∈ C all matrices of the form

M :=
(

α11M11 α12M12

α21M21 α22M22

)
satisfy the orthogonal condition with respect to K defined as in proposition 3.13.
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4. Classes of graphs

In this section, we will discuss some classes of graphs, combining the results of the preceding
sections. We present some (non-standard) graph theoretical definitions we will use through
this section.

Definition 4.1. Let G a graph with no isolated nodes, i.e., such that �(vk) � 1 for all
k = 1, . . . , n.

• We call the graph G completely unconnected if G is the union of disjoint compact intervals,
i.e., if G is a regular graph of degree 1.

• We call the graph G an inbound (respectively, outbound) star, if there exists a node vk

such that ej (1) = vk , (respectively, if ej (0) = vk), for all j = 1, . . . , m. We call the
graph G a star if it is an inbound or outbound star and vk the centre of the star.

• We call the graph G bipartite if each node has only either incoming or outgoing edges.
• We call the graph G Eulerian if all nodes have the same number of incoming and outgoing

edges.
• We call a graph G a layer graph if there exist disjoint sets V1, . . . , VL such that

– V = ∪L
p=1Vp,

– ej (0) ∈ Vp implies ej (1) ∈ Vp+1 for all p = 1, . . . , L − 1 and
– ej (0) ∈ VL implies ej (1) ∈ V1.

Nodes belonging to Vp are said to lie in the pth layer. Edges outgoing from nodes in the
pth layer are also said to lie in the pth layer.

• We call a layer graph symmetric if the incoming and outgoing degrees of the nodes
only depends on the layer, i.e., if there exist numbers I (p),O(p) ∈ N0 such that
|�+(v)| = I (p), |�−(v)| = O(p) for all nodes v in the pth layer.

4.1. Bipartite and Euler graphs

It is possible to characterize some classes of graphs by the admissibility of the matrix from
proposition 3.13.

Theorem 4.2. Consider the orthogonal projection K defined by

K :=
(

1

m

)
i,j=1,...,m

. (4.1)

Then PK is admissible if and only if G is bipartite or Eulerian.

Proof. Fix f ∈ V and observe that PKf always lies in (H 1(0, 1))m since every component
is a linear combination of H 1 functions. So V is invariant if and only if Pkf is continuous in
the nodes. Let V1 ⊂ V denote the set of all vertices having outgoing edges, and let V2 ⊂ V
denote the set of all vertices having incoming edges. We distinguish two cases. First, assume
V1 ∩ V2 = ∅. Then G is a bipartite graph.

On the other hand, if V1 ∩ V2 �= ∅, then by definition of K a vector dPKf exists if and only
if

m∑
j=1

fj (0)

m
=

m∑
j=1

fj (1)

m
. (4.2)
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We show now that the equality (4.2) is equivalent to the graph being Eulerian. First, assume
that (4.2) holds for every f ∈ V . Fix an arbitrary vk ∈ V and choose f ∈ V such that
df = 11{i}. Then

1

m
|�+(vk)| =

m∑
j=1

fj (0)

m
=

m∑
j=1

fj (1)

m
= 1

m
|�−(vk)|.

Thus it is necessary that |�−(vk)| = |�+(vk)| holds for every k = 1, . . . , n. Conversely,
assume that |�−(vk)| = |�+(vk)| holds for every k = 1, . . . , n. Then

m∑
j=1

fj (0)

m
= 1

m

n∑
k=1

|�+(vk)|df

k = 1

m

n∑
k=1

|�−(vk)|df

k =
m∑

j=1

fj (1)

m
.

Hence (4.2) is satisfied, so this condition is also sufficient.
It only remains to show that indeed for every bipartite graph K is admissible. To see

this, note that for an arbitrary f ∈ V the vector dPKf can be chosen to equal
∑m

i=1
fi (0)

m
in all

components belonging to nodes in V1 and to equal
∑m

i=1
fi (1)

m
in all components belonging to

V2. This shows continuity of PKf in the nodes, thus implying PKf ∈ V . �

Remark 4.3. The matrix K defined in (4.1) acts on a vector v ∈ C
m by substituting each

component by the average of all components of the vector. The range of such a matrix is thus
one dimensional, and one sees that

RgPK = {f ∈ V : fi = fj for all i, j = 1, . . . , m}.
Such functions are symmetric in the sense that they are equal on each edge at the same point of
the parametrization. In fact, theorem 4.2 characterizes the admissibility of projections whose
ranges consist of the functions that are symmetric on the network. It thus gives a first answer
to the problem stated in remark 3.2.

4.2. Stars

Main result of this subsection is a characterization of stars in the class of the simple graphs.
We first investigate the admissibility of projections.

Proposition 4.4. The following assertions hold.

(1) The graph G is completely unconnected if and only if PK is admissible for all orthogonal
projections K.

(2) Let G be a simple, connected graph. Then G is a star if and only if PK is admissible for
all orthogonal projections K with eigenvector 11.

Proof. (1) Since the graph G is completely unconnected, the continuity condition in V is
empty, and therefore each PK is admissible. Conversely, if G is not completely unconnected,
then it is possible to decompose G into the disjoint union of a connected graph G1 with m1

edges and the remaining graph G2. Let K1 be an orthogonal projection of C
m1 , which does

not have 11 as an eigenvector. Lemmas 3.5 and 3.8 assert that the orthogonal projection(
K1 0
0 Id

)

is not admissible.
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(2) Without loss of generality, we prove the claim for an outgoing star with centre v1 and
with the natural numbering of the other nodes. Let the graph G be a star and K be a projection
such that K11 = 11. In fact, for this star

Ĩ =
(

11 0
0 Idm

)
.

Since now K has 11 as eigenvector to the eigenvalue 1, one can compute

K̃ Ĩ =
(

K11 0
0 KIdm

)
=

(
11 0
0 K

)
.

It is now clear that Rg K̃ Ĩ ⊂ Rg Ĩ, and this implies the admissibility of PK . Conversely,
assume that the graph G is not a star. One sees that this implies the existence of an undirected
path of length 3. We will denote it by e1, e2, e3, possibly relabelling the edges. Our strategy
is the following: for each graph that is a path consisting of three edges we construct a non-
admissible projection PL where L11 = 11. We then consider the projection PK , where K
is

K :=
(

L 0
0 Id

)
.

Then, by lemma 3.8, we conclude that PK is not admissible, although 11’s an eigenvector of K.
First, consider cycles of length 3. Since each edge can be directed arbitrarily, there are

eight such graphs. Let us start with the case of a not strongly connected graph. Such graphs
are neither Eulerian nor bipartite. Thus, theorem 4.2 provides an example of an L as requested.
If the graph is a (directed) cycle such that e1(0) = v1, consider the projection

L :=

⎛
⎜⎝

1
2

1
2 0

1
2

1
2 0

0 0 1

⎞
⎟⎠

and the function f defined by f (x) := (x, 1−x, 0)� ∈ V . One sees that f ∈ V butPKf �∈ V ,
since PKf (x) = (

1
2 , 1

2 , 0
)�

for a.e. x ∈ (0, 1).
Consider now the lines of length 3. We split this into three possible cases: G may be

bipartite line, a (directed) line, or neither a (directed) line nor a bipartite graph. In the last two
cases the graphs is neither bipartite nor Eulerian, and hence we can use theorem 4.2 again. In
the case of a bipartite line, let us consider the projection

L :=
⎛
⎝

1
2

1
2 0

0 0 1
1
2

1
2 0

⎞
⎠

for the parametrization e1(0) = v1, e1(1) = e2(1) = v2, e2(0) = e3(0) = v3 and
e3(1) = v4. Consider the function f (x) := (x, x, 0)�. Again, f ∈ V but PKf �∈ V ,
since PKf (x) = (

x
2 , x, x

2

)�
for a.e. x ∈ (0, 1). This completes the proof. �

Remark 4.5. In proposition 4.4, (2) we have assumed the graph G to have no multiple
edges. In fact, it is not possible to relax this condition, since all orthogonal projections with
eigenvector 11 are admissible on all connected graphs consisting of two nodes and m edges for
each m ∈ N and each orientation of the edges.

Now we investigate the orthogonality condition for diagonal matrices C. This will show
that for a wide class of matrices C there cannot exist nontrivial invariant subspaces of the form
considered in this paper.
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Lemma 4.6. Let D be a constant diagonal matrix with entries di > 0. Then the following
assertions hold.

(1) Assume the coefficients di to be pairwise different. If K is an orthogonal projection with
eigenvector 11 such that D Rg K ⊂ Rg K , then K is trivial, i.e., K = Id or K = 0.

(2) Assume that there exists i0 �= j0 such that di0 = dj0 . Then there exists a nontrivial
orthogonal projection K with eigenvector 11 such that D Rg K ⊂ Rg K .

Proof. Observe that it is possible to compute the powers of D explicitly, since it is diagonal.
In fact, Dk = diag

(
ck
i

)
i=...,m

for every k ∈ N0.
(1) Since K is an orthogonal projection and 11 is an eigenvector, either K11 = 11 or K11 = 0.

If K11 = 11, i.e., 11 ∈ Rg K , we see by induction that
(
dk

1 , dk
2 , . . . , dk

m

) = Dk11 ∈ Rg K for
every k ∈ N since Rg K is invariant under the action ofD. Now, the matrix V := (dij )i,j=1,...,m,
defined by

dij := d
j−1
i i, j = 1, . . . , m

is the Vandermonde matrix induced by the vector (di)i=1,...,m, which is regular since di are
pairwise different. From this we see Rg K = C

k , i.e., K = Id.
If on the other hand K11 = 0, then fix v ∈ Rg K . Since 11 is in the kernel of

K, Rg K ⊂ 〈11〉⊥. Since the range of K is invariant under the action of the matrix C, we
obtain (Cnv | 11) = ∑m

i=1 dn
i vi = 0 for every n ∈ N. In particular, v satisfies the equation

V T v = 0. Since V is regular, we obtain v = 0, which implies Rg K = {0}, hence K = 0.
(2) In order to prove the second assertion, let i �= j such that di = dj . Consider

Y := span
{
Dn11 = (

dn
1 , . . . , dn

m

) ∣∣ n ∈ N
} ⊂ C

m,

and let K be the orthogonal projection onto Y. Since 11 ∈ Y,K11 = 11, and in particular K �= 0.
Moreover, vi = vj for all v ∈ Y , which implies Rg K �= C

m. As a consequence K �= Id.
Finally, DY ⊂ Y , and hence the range of K is invariant under the action of D. This completes
the proof. �

Combining the previous two statements we deduce the following.

Proposition 4.7. Let the graph G be connected. If the coefficient matrix C is diagonal and
M = 0, then the following assertions hold.

(1) Let C be constant and G be a star. If there exist i0, j0 such that ci0 = cj0 , then the subspace

Y := {
f ∈ X2

∣∣ fi0(x) = fj0(x) for a.e. x ∈ (0, 1)
}

is invariant under the action of (etA)t�0.
(2) Assume the coefficients ci(x0) to be pairwise different for some x0 ∈ [0, 1]. If Y is a

nontrivial linear subspace of C
m, then Y , defined as above, is not invariant under the

action of (etA)t�0.

Proof. (1) Without loss of generality, assume c1 = c2. Consider the subspace

Y := {v ∈ C
m : v1 = v2}

and let K be the orthogonal projection onto Y. Since 11 ∈ Y,K11 = 11. Furthermore,
by proposition 4.4 K is admissible, since G is a star. Let v ∈ Y . Computing now
Cv = (cj vj )j=1,...,m shows that Cv ∈ Y , since c1 = c2 and v1 = v2. This shows that
C Rg K ⊂ Rg K , thus completing the proof of the first claim.

(2) Let Y ⊂ C
m be a linear subspace, and let K be the orthogonal projection onto Y.

Remember that the invariance of this subspace is equivalent to the fact that K is admissible
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and that the sesquilinear form a satisfies the orthogonality condition with respect to PK . If K
is not admissible, then the proof is complete. Thus, assume that K is admissible. Since the
graph G is assumed to be connected, 11 is an eigenvector of K. The orthogonality condition is
equivalent to C(x)Y ⊂ Y for all x ∈ [0, 1], according to proposition 3.9. Using lemma 4.6
we see that since the diagonal entries of C(x0) are pairwise different, this is not possible for
nontrivial K. Hence the proof is complete. �

4.3. Layer graphs

In this section, we prove an admissibility result for symmetric layer graphs. We start fixing a
canonical numbering of the edges of a layer graph. First, observe that the node decomposition
induces an edge decomposition E = ∪L

p=1Ep by setting

Ep := {e ∈ E : e lies in the pth layer}.
After relabelling the edges we may assume that there exist Lp, p = 1, . . . , L + 1 satisfying

(1) L1 = 0;
(2) ei (0) = ej (0) or ei (1) = ej (1) implies Lp−1 < i, j � Lp for some p;
(3) ei (0) = ej (1) implies Lp−1 < j � Lp < i � Lp+1 for some p.

The numbering obtained in such a way has the property that ei is in the pth layer if and only
if Lp < i � Lp+1. In fact, all edges ei such that i � Lp+1 are in any of the first p layers.

We are going to exhibit a class of admissible projections. Although the result is not a
complete characterization, it is optimal in a sense we will explain later.

Proposition 4.8. Consider a symmetric layer graph G and the orthogonal projection K

K =

⎛
⎜⎜⎝

(
1

|E1|
)
i,j=1,...,|E1| 0

. . .

0
(

1
|EL|

)
i,j=1,...,|EL|

⎞
⎟⎟⎠ , (4.3)

where |Ep|, p = 1, . . . , L denotes the number of edges in the pth layer. ThenPK is admissible.

Proof. One has to check the continuity condition for each p = 1, . . . , L − 1 in every node of
the pth layer. Define the auxiliary function

λ : k �→ layer of the node vk.

We thus have to check continuity in those nodes vk such that λ(k) = p, p = 1, . . . , L − 1.
The set λ−1(p) can be represented in the form

λ−1(p) = {k : ∃i ∈ {Lp + 1, . . . , Lp+1} s.t. ei (1) = vk},
as well as in the form

λ−1(p) = {k : ∃i ∈ {Lp+1 + 1, . . . , Lp+2} s.t. ei (0) = vk},
whenever the expression is defined. By the definition of K, one sees that for all p = 1, . . . , L−1
and all i, j = Lp + 1, . . . , Lp+1 the identities

PKfi(1) = PKfj (1), PKfi(0) = PKfj (0) (4.4)

hold. As a consequence, for layers having incoming or outgoing degree 0, the continuity is
obvious. Assume now that I (p) �= 0 and O(p) �= 0.
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For an edge ei in the pth layer and for f ∈ V ,

(PKf )i(1) =
Lp+1∑

i=Lp+1

fi(1)

|Ep| =
∑

k∈λ−1(p)

|�−(vk)|fi(1)

|Ep| .

Recall that since our graph is symmetric, the incidence degree |�−(vk)| only depends on the
layer, and therefore we can write

(PKf )i(1) =
∑

k∈λ−1(p)

|I (p)|f (vk)

|Ep| = |I (p)|
|Ep|

∑
k∈λ−1(p)

f (vk).

With analogous computations we obtain for edges in the p + 1 layer

(PKf )i(0) = |O(p)|
|Ep+1|

∑
k∈λ−1(p)

f (vk).

Observe that the identities |Ep+1| = |λ−1(p)||O(p)| and |Ep| = |λ−1(p)||I (p)| imply
|O(p)||Ep+1|−1 = |I (p)||Ep|−1. We have thus proved that (PKf )i(1) = (PKf )j (0) for
all ei , ej such that i ∈ λ−1(p), j ∈ λ−1(p + 1). This completes the proof. �

Corollary 4.9. Let G be a symmetric layer graph. If M = 0 and C = c(x)Id for some function
0 < c ∈ C1[0, 1], then the space

Y := {f ∈ L2 : fi = fj for all i, j ∈ �−1(p), p = 1, . . . , L}
is invariant under the action of (etA)t�0.

Remarks 4.10

(1) The class of the layer graphs is not a common object in the graph theoretical literature.
In fact, layer graphs are nothing but (directed) p-partite graphs, for which collapsing the
components of the graphs to a single vertex leads to a finite line or to a cycle. In particular,
homogeneous trees of finite depth are symmetric layer graphs. Such graphs play a role in
the investigation of biological neural networks.

(2) The symmetry condition in proposition 4.8 cannot be relaxed. To see this, consider the
following simple example. Let G be an outgoing star of order 2 and consider two copies
of G. Identifying two of the external nodes defines a layer graph. One can show that the
orthogonal projection defined in (4.3) is not admissible, due to the two free nodes in the
second layer.

(3) It seems to be possible to extend the result of proposition 4.8 to non-symmetric layer
graphs, requiring some weaker condition and suitably weighting the projection of (4.3)
according to the degrees. However, such results are quite technical. Presenting them in
detail goes beyond the scope of this paper.

5. Applications

5.1. Ephaptic coupling of biological fibres

In the modern neurobiology’s early years it was common sense that neuron should
communicate with each other remotely, only by means of their electrical activity. In this
context, the theory of so-called ephaptic connection was forged in the 1940s by Arvanitaki,
and Nobel laureate Katz and Schmitt (cf [3, 17]). Such a theory was thought to be surpassed
after the newly invented electron microscopes allowed in 1954 to finally prove the existence
of chemical synapses.
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Although synaptic connections are ultimately stronger and more common, more recent
experiments have however found evidence of ephaptic effects in several animals and even in
human patients. While experiments have been conducted in real neuronal networks, to the
best of our knowledge mathematical models of ephaptic connections have only been treated
in [15]. Though, there is some literature for the special case of bundles of (synaptically)
unconnected nerve fibres of infinite length (cf [4, 5, 16] and references therein).

Although the derivation in the quoted articles is different, the mathematical models
presented in [16, section 4], [4, section 4] and [5] are comparable. Possibly up to linearization,
they describe ephaptic interaction within a myelinated nerve fibre of m axons of infinite lengths
by a system of diffusion equations of the form⎧⎪⎨

⎪⎩
u̇1(t, x) = ∑m

j=1(c1ju
′
j (t, ·))′(x), t � 0, x ∈ R,

...

u̇m(t, x) = ∑m
j=1(cmju

′
j (t, ·))′(x), t � 0, x ∈ R,

(5.1)

where ui(t, x) is the electric potential of the ith axon at space x and time t. The coefficients
(cij ) are positive constants that represent the ephaptic effect on the ith axon due to the activity
of the j th one. We emphasize that the mutual interactions and therefore the matrix (cij ) are in
general non-symmetric.

Whenever potential transmission in neuronal networks is mathematically modelled,
neurobiologists usually assume that some form of Kirchhoff law holds in the nodes, as well
as continuity of potential. In the easiest linear case, this amounts to saying that in each node
the total incoming electric flow equals the total outgoing one, possibly up to some form of
dissipation (cf [24]). As we have seen in remark 2.1, the natural generalization of Kirchhoff
node conditions to the case of strongly coupled network equations is given by (2.3).

This motivates us to consider (2.4) as a model for transmission of potential in (passive)
nerve fibres where ephaptic effects hold. The following results allows us to easily discuss also
the computationally hard case of numerous contiguous neurons.

Proposition 5.1. If the coefficients cij satisfy

cii >
∑
j �=i

|cij + cji |
2

, i = 1, . . . , m, (5.2)

then the initial value problem associated with (5.1) is well-posed.

Proof. By the results of section 2, the initial value problem is well-posed if the coefficient
matrix C is coercive. By Gershgorin’s circle theorem, we directly obtain that (5.2) implies
coercivity of the matrix C, and the assertion follows by corollary 2.3. �

The coefficients (cij ) are phenomenological constants that have to be determined
experimentally. As already observed in [9, section 4.1], the model proposed in [16] (i.e.,
cij ≡ c for all i, j ) seems to be ill-posed in the light of remark 2.4, whereas in the models
proposed in [4, 5] the possibility to apply corollary 2.3 depends on the values given to the
coupling parameters.

In all models of ephaptic coupling considered above, the coefficients are assumed to
satisfy

∑m
i=1 cij = const1 for all j and

∑m
j=1 cij = const2 for all i. Then by theorem 4.2

one can say that a necessary condition for the subspace of pointwise equal functions to
be invariant under the action of (etA)t�0 is that the neuronal network is either bipartite or
Eulerian. In fact, assuming for the sake of simplicity that no dissipation happens in the nodes
(i.e., M = 0), one deduces that there exists two function C1, C2 : [0, 1] → C such that for all
x ∈ [0, 1]

∑m
j=1 cij (x) = C1(x) for all i and

∑m
i=1 cij (x) = C2(x) for all j .
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Observe that by proposition 2.6 even if the system is governed by a contractive semigroup
in X2 (which is the case if M is dissipative), no contractivity property holds with respect to the
norms ‖·‖1 and ‖·‖∞ unless C is diagonal. In other words, the system’s potential may increase
both globally and locally, as soon as ephaptic effects are actually considered.

5.2. Quantum graphs

Consider a finite network of thin waveguides e1, . . . , em of (possibly different) lengths
�1, . . . , �m. Discussing the propagation of wavefunctions, i.e., studying the evolution of a
system of Schrödinger equations

i�
∂vj

∂t
(t, x) = ∂2vj

∂x2
(t, x), x ∈ (0, �j ), t ∈ R,

over such linear structures—usually called quantum graphs—has become a relevant topic
in recent years (see, e.g., [14, 19, 21] and references therein). Kirchhoff or more general
self-adjoint conditions are usually imposed in the nodes of quantum graphs.

In order to define an Hamiltonian associated with the quantum graph, observe that after a
change of coordinates the above equation reads

∂uj

∂t
(t, x) = −i

��2
j

∂2uj

∂x2
(t, x), x ∈ (0, 1), t ∈ R.

The Hamiltonian is thus given by iA, where (A,D(A)) is the operator introduced in (2.5)–(2.6)
and associated with the form a. Here we are considering coefficients

cij =
⎧⎨
⎩

1

��2
j

if i = j,

0 otherwise.

Thus, the operator A is self-adjoint if and only if the ephaptic coupling and nodal coefficient
matrices C(x), x ∈ [0, 1], and M are both self-adjoint, which we assume throughout. Then
by Stones’s theorem iA generates a unitary group that governs the evolution on the quantum
graph. As in classical field theory, we introduce the action functional S for the time evolution
of the quantum graph (resp., of the parabolic problem), which is defined as

S(ψ) =
∫ T

0

m∑
j=1

∫ 1

0

(
iψjψ̇j +

1

2h̄�2
j

|ψ ′
j |2

)
dx dt

⎛
⎝resp., as S(ψ) =

∫ T

0

m∑
j=1

∫ 1

0

(
ψjψ̇j +

1

2h̄�2
j

|ψ ′
j |2

)
dx dt

⎞
⎠ ,

i.e., S(ψ) = ∫ T

0 (i(ψ |ψ̇)X2 + a(ψ,ψ)) dt (resp., S(ψ) = ∫ T

0 ((ψ |ψ̇)X2 + a(ψ,ψ)) dt). Here
we have implicitly assumed that ψ ∈ C1([0, T ]),X2) ∩ C([0, T ], V ) for an arbitrary T > 0.
Our aim is to discuss symmetry property of the system, in the following sense.

Definition 5.2

(1) We call a C0-group (U(s))s∈R on X2 a symmetry group for the system of Schrödinger
equations (parabolic equations) over the network if S(ψ) = S(U(s)ψ) for all s ∈ R,
where (U(s)ψ)(t) := U(s)ψ(t), t ∈ [0, T ].
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(2) We say that a bounded linear operator P on X2 reflects a symmetry of the parabolic
network problem if PK etA = etAPK for all t � 0, i.e., if projecting the initial value and
then studying the corresponding time evolution is equivalent to projecting the solution
curve of the original problem.

Since U(s) does not act on the time variable, one sees that due to the time continuity
of ψ a self-adjoint bounded linear operator on X2, i.e., an observable P of the physical
system, is the infinitesimal generator of a symmetry group (eisP)s∈R if and only if it satisfies
a(ψ,ψ) = a(eisPψ, eisPψ) for all s ∈ R and all ψ ∈ V .

We consider the case of a closed linear subspace Y constructed as in (3.1) and discuss
observables P = PK given by orthogonal projections of the state space X2 := (L2(0, 1))m

onto Y that satisfy (3.2). A justification for the use of the term ‘symmetry’ in definition 5.2 is
given in the following. Some of the implications below are probably known; we collect them
for the sake of self-containedness and of consistency with our notation based on the theory of
sesquilinear forms.

Proposition 5.3. Let PK be an observable of the system as defined above, and assume K to
be admissible. The following assertions are equivalent.

(a) The projection PK reflects a symmetry of the network parabolic problem.
(b) The subspace Y = RgPK is invariant under (etA)t�0.
(c) a(PKψ,ψ) = a(PKψ,PKψ) for all ψ ∈ V .
(d) The projection PK generates a symmetry group of the parabolic network equation, i.e.,

a(ψ,ψ) = a(eisPK ψ, eisPK ψ) for all s ∈ R and all ψ ∈ V .
(e) The projection PK generates a symmetry group of the network Schrödinger equation.
(f) The subspace Y = RgPK is invariant under (eitA)t∈R.

Proof. Note that the invariance of Y = RgPK under the action of (etA)t�0 is equivalent to

PK etAPK = etAPK for all t � 0.

‘(a) ⇒ (b)’ This is obvious, since P2
K = PK .

‘(b) ⇒ (a)’ Since PK and etA are self-adjoint,

PK etA = (etAPK)∗ = (PK etAPK)∗ = PK etAPK = etAPK.

‘(b) ⇔ (c)’ By theorem 3.1, (b) is equivalent to a(PKf, (Id − PK)f ) = 0 for every
f ∈ X2. But this is (c).

‘(c) ⇔ (d)’ Since PK is a projection,

ezPK =
∞∑

j=0

zj

j !
Pj

K =
∞∑

j=1

zj

j !
PK + Id = (ez − 1)PK + Id.

Using this representation we see that

a(eisPK ψ, eisPK ψ) = a((eis − 1)PKψ, (eis − 1)PKψ)

+ 2Re a((eis − 1)PKψ,ψ) + a(ψ,ψ)

= a(PKψ,PKψ) − 2Re eisa(PKψ,PKψ) + a(PKψ,PKψ)

+ 2Re (eis − 1)a(PKψ,ψ) + a(ψ,ψ)

= 2a(PKψ,PKψ) − 2a(PKψ,ψ) + a(ψ,ψ).

Thus (d) is equivalent to 2a(PKψ,PKψ) − 2a(PKψ,ψ) = 0 for every ψ ∈ V , which is (c).
‘(d) ⇔ (e)’ Both statements are equivalent to a(ψ,ψ) = a(eisPK ψ, eisPK ψ) for all s ∈ R

and all ψ ∈ V , since eisPK is an unitary operator that commutes with the time derivative.
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‘(b) ⇒ (f)’ After rescaling we may assume that (etA)t�0 is contractive. It is known that
the invariance of Y under (etA)t�0 is equivalent to invariance of Y under R(λ,A) for all λ ∈ R

large enough (see, e.g., [29, proposition 2.1]). On the other hand, (eitA)t∈R is also a (unitary,
hence contractive) C0-(semi)group that satisfies eitAY ⊂ Y if and only if R(λ, iA)Y ⊂ Y
for λ large enough, i.e., if and only if iR

(
λ
i
, A

)
Y ⊂ Y for λ large enough. In fact, the

resolvent set of A contains an open sector of C which contains �, i.e., it contains the closed
right half plane (with the possible exception of the origin). Then, for any λ0, µ ∈ � such that
|µ − λ0| � ‖R(λ0, A)‖−1 it is possible to develop the resolvent operator R(µ,A) as a power
series centred at λ0, i.e.,

R(µ,A) =
∞∑

n=0

(λ0 − µ)nR(λ0, A)n+1.

Let now Y be invariant under (etA)t�0. Then Y is invariant under R(λ0, A) for some λ0, i.e.,
R(λ0, A)y ∈ Y for all y ∈ Y . Since Y is a closed linear subspace, one obtains

R(µ,A)y =
∞∑

n=0

(λ0 − µ)nR(λ0, A)n+1y ∈ Y for all y ∈ Y and |µ − λ0| � ‖R(λ0, A)‖−1,

and therefore Y is invariant under R(µ,A). This shows that the subset of the resolvent set
for which R(λ,A)Y ⊂ Y is open. Moreover, it is relatively closed since Y is closed. As a
consequence, Y is invariant under R(µ,A) for all µ in the unbounded connected component
of the spectrum containing λ0, and therefore also for all iλ, λ ∈ R large enough. By the
representation of the semigroup in terms of the resolvent this shows that Y is invariant under
the unitary group (eitA)t∈R.

‘(f) ⇒ (b)’ This can be proved in the same spirit as the implication ‘(b) ⇒ (f)’. �

Remark 5.4. Careful examination of the proof above shows that a(f, f ) = a(eitPK f, eitPK f )

and admissibility of K are equivalent to

PK etA = etA∗PK for all t � 0, (5.3)

even if A is not self-adjoint. Definition 5.2 can thus be generalized by saying that PK reflects
a symmetry of a (possibly non-self-adjoint) parabolic network problem if (5.3) holds.

Thus, Y is invariant under the action of (eitA)t�0 if and only if the associated orthogonal
projection P is admissible and the orthogonality condition is satisfied by M, i.e., if and only if
Y is invariant under the action of (etA)t∈R. In particular, for a star graph G proposition 4.7.(1)
yields that there are nontrivial invariant subspaces of the above form if and only if there is a
pair of edges with the same length.
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